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We report on measurements of the �(1S), �(2S) and �(3S) di�er-

ential, (d2�=dPtdy)y=0, and integrated cross sections in pp collisions at

p
s = 1:8 TeV using a sample of 16.6 � 0.6 pb�1 collected by the Col-

lider Detector at Fermilab. The three resonances were reconstructed

through the decay � ! �+��. Comparison is made to a leading order

QCD prediction.

PACS numbers: 13.85.Ni, 14.40.Gx

We report a study of the reaction p�p ! �X ! �+��X at
p
s = 1:8 TeV. This

study yields the Pt (momentum transverse to the beam direction) dependence of the

production cross sections for the �(1S), �(2S), and �(3S) states as well as the inte-

grated cross sections. These results represent the �rst measurements of the individual

� cross sections at a hadron collider, and are important for the investigation of bb

bound state production mechanisms in p�p collisions [1{5]. It is expected that the

� resonances are produced directly or from the decay of higher mass b�b states. Us-

ing information from our silicon vertex detector, we have previously determined [6]

that � production is not consistent with the decay of long-lived particles. Since our

measurements [7] of prompt charmonia production for the J= and  (2S) states are

higher than the theoretical predictions [8,9,2], it is of interest to carry out similar

comparisons for the � particles. Additionally, the � states allow exploration of the

low Pt region inaccessible to the charmonia measurements, which do not extend below

4 GeV/c due to triggering constraints.

The data were collected in 1992-93 by the Collider Detector at Fermilab. The

CDF detector has been described in detail elsewhere [10]. The components relevant
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to this analysis are briey described here. The z-axis of the detector coordinate

system is along the beam direction. The Central Tracking Chamber (CTC) is in a 1.4

T axial magnetic �eld and has a resolution of �Pt=Pt =
q
(0:0011Pt)2 + (0:0066)2 for

beam-constrained tracks where Pt is measured in GeV/c. The central muon chambers

(CMU), at a radius of 3.5 m from the beam axis, are located behind �ve interaction

lengths of calorimeter and provide muon identi�cation in the region of pseudorapidity

j�j < 0:6, where � = �ln[tan(�=2)] and � is the polar angle with respect to the beam

axis. These chambers are complemented by the central muon upgrade system (CMP)

which consists of four layers of drift chambers behind an additional four interaction

lengths of steel absorber. Requiring the CMP reduces the hadronic punch-through

backgrounds by approximately a factor of 10.

The measurements reported here are based on a 16.6 � 0.6 pb�1 data sample

of muon pairs collected with a three-level online trigger [11]. The level 1 trigger

required two charged track segments in the central muon chambers. The e�ciency

for this trigger is 90% at Pt = 3:1 GeV/c and has a plateau of 94%. At level 2 at least

one muon segment was required to match a CTC track found by a hardware track

processor. The level 2 trigger is 90% e�cient at Pt = 3:1 GeV/c and has a plateau

of 93%. The level 3 trigger required a pair of fully reconstructed tracks matched to

hits in the muon chambers. Both muons were required to have Pt greater than 2.0

GeV/c, with at least one muon having Pt greater than 2.5 GeV/c.

Additional requirements were made o�ine to isolate the � resonances. Both

muons from the �! �+�� decay were required to be identi�ed by the CMU system

and at least one muon had to be identi�ed by the CMP system. The momenta of the
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muons were determined using CTC information along with the constraint that the

particles must originate from the beamline. To reduce the sensitivity to the trigger

thresholds, the Pt of both muons was required to be greater than 2.2 GeV/c and

at least one muon had to have Pt greater than 2.8 GeV/c. Each muon chamber

track was required to match its associated CTC track to within 3� in r� � and 3:5�

in z, where � is the calculated uncertainty due to multiple scattering, energy loss,

and measurement uncertainties. The muons were required to have opposite charge

and the rapidity of the reconstructed pair had to be in the region jyj < 0:4, where

y = (1=2) � ln(E+pk

E�pk
), E is the energy of the dimuon pair and pk its momentum parallel

to the beam direction. The resulting mass distribution of muon pairs, shown in Figure

1, is well described by a �t to three gaussians and a quadratic background.

The di�erential cross section times the branching ratio for �! �+�� is calculated

in each Pt bin according to the equation

 
d2�(�)

dPtdy

!
y=0

Br(�! �+��) =
Nfit

A
R Ldt�Pt �y �l1l2 �l3 �trk �� �rad

where Nfit is the number of � signal events in each Pt bin, A is the geometric and

kinematic acceptance,
R Ldt is the integrated luminosity, �Pt is the width of the bin,

and �y is the rapidity range of the � (jyj < 0:4). The various e�ciency corrections

include the combined level 1 and level 2 trigger e�ciency, �l1l2, the level 3 trigger

e�ciency, �l3, the e�ciency for reconstructing o�ine both tracks in the CTC, �trk,

and the e�ciency for reconstructing both muon track segments and associating them

with extrapolated CTC tracks, ��. The additional e�ciency correction factor, �rad,

accounts for event losses due to internal radiation from the muons.
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A binned likelihood �t was performed on the dimuon mass distribution for each

Pt bin to determine the number of signal events (Nfit). For the �(1S) the region

between 8.7 and 9.8 GeV/c2 was �t to a gaussian plus quadratic background. In

order to better estimate the background, the values of Nfit for the �(2S) and �(3S)

were obtained by �tting all three resonances simultaneously to three gaussians with a

quadratic background. The gaussian means were not �xed in these �ts. The relative

widths of the resonances in each Pt bin were constrained to values determined from

Monte Carlo simulation. For the �(2S) and �(3S) resonances the region below Pt of 1

GeV/c is dominated by background and no signi�cant excess of events was observed.

The geometric and kinematic acceptances for �(1S),�(2S), �(3S) ! �+�� were

calculated with a Monte Carlo simulation. The event generator produces � particles

with at Pt and y distributions. Since the polarization of the � resonances is not

known, the states were assumed to decay isotropically. The generated events were

processed with a detector simulation, and with the same reconstruction criteria that

were imposed on the data. The integrated acceptance A was computed for each Pt

bin, and varies in the range of 16% to 19%.

The events were corrected for the level 1 and level 2 trigger e�ciency, �l1l2, which

is typically 87% for each Pt bin. The values of the Pt independent e�ciencies are

�l3 = (92� 2)%, �trk = (98 � 2)%, �� = (95 � 1)%, and �rad = (93 � 2)%.

A Pt dependent systematic uncertainty arises from the unknown � polarization.

This uncertainty was determined by recomputing the cross section assuming that the

muons from the � decay have an angular distribution proportional to 1 + �cos2��,

where �� is the polar angle in the rest frame of the � and � = �1. The systematic
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uncertainty in the acceptance associated with the production model (7%) was deter-

mined by recalculating the acceptances using a parton level generator which provides

the four momentum of all known bb bound states which decay to the � resonances.

The systematic uncertainty in the determination of Nfit (6% for �(1S) and 10% for

the �(2S) and �(3S)) was estimated by varying the gaussian widths and the shape

of the background used in the �ts. Additional systematic uncertainties arise from the

luminosity determination (3.6%), the level 1 and level 2 trigger e�ciency corrections

(4%), and the Pt independent e�ciency corrections (4%).

The di�erential cross section results are summarized in Tables I{III. The asym-

metric polarization systematic uncertainties are indicated separately from the other

systematic uncertainties which have been added in quadrature. The results are dis-

played in Figure 2 where the vertical error bars include the statistical uncertainty

added in quadrature with the polarization, �tting procedure and acceptance model

systematic uncertainties. The common 7% systematic uncertainty associated with

the e�ciency corrections and the luminosity measurement is not included in the error

bars.

Theoretical predictions from Ref. [5] are also shown in Figure 2. These curves

include only the color-singlet contributions discussed in Ref. [5], and are shown in the

region Pt > 2 GeV/c, as below that value they are expected not to be reliable. The

calculation for the �(1S) includes contributions from direct production and �b(1P)

and �b(2P) decay (contributions from �(2S) and �(3S) decay are neglected). The

theoretical prediction for the �(2S) includes direct production and �b(2P) decay. Two

theoretical curves are shown for the �(3S) cross section. One corresponds to the direct
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�(3S) production contribution [12] and the other to the sum of the contributions

from the direct �(3S) production and the decay of the unobserved �b(3P) state.

Recently, attempts have been made to explain the discrepancies in both the shape

and normalization between the theoretical and measured distributions. These include

the inclusion of kT e�ects [4] and novel color-octet production mechanisms [5,13].

The integrated cross section results are:

d�=dy(pp! �(1S); y = 0; 0< Pt< 16 GeV=c)�Br = 753 � 29 (stat) � 72 (sys) pb

d�=dy(pp! �(2S); y = 0; 1< Pt< 10 GeV=c)�Br = 183 � 18 (stat) � 24 (sys) pb

d�=dy(pp! �(3S); y = 0; 1< Pt< 10 GeV=c)�Br = 101 � 15 (stat)� 13 (sys) pb:

The systematic uncertainties from the polarization model are 2%, 5%, and 5% for the

�(1S), �(2S), and �(3S) respectively. The uncertainty from the acceptance model

is estimated to be 3%. The uncertainty from the �tting procedure is conservatively

taken to be the same as that used for the di�erential cross section values, as are the

uncertainties from the luminosity determination and the e�ciency corrections.

The ratios of the integrated cross sections results can also be computed in the

range 1< Pt< 10 GeV/c for jyj < 0:4. The results are �Br(�(2S))=�Br(�(1S)) =

0:281�0:030(stat)�0:038(sys) and �Br(�(3S))=�Br(�(1S)) = 0:155�0:024(stat)�

0:021 (sys). In calculating the systematic uncertainty on the ratio, the uncertainties

arising from the �tting procedure, acceptance model, and assumed � polarization

were taken as uncorrelated. These production ratios are consistent with the results

from experiments at lower energies [3,14].

In conclusion we have measured both the integrated and di�erential cross sections
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in the range 0< Pt< 16 GeV/c for the �(1S) and in the range 1< Pt< 10 GeV/c for

the �(2S) and �(3S) states. The rate of � production was found to be higher than

leading order QCD predictions. Inclusion of additional production mechanisms may

help to explain some of the discrepancies.
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TABLE I. The di�erential cross section (d2�=dPtdy)y=0�Br(�(1S)! �+��) for �(1S).

Pt Cross Stat. Pol. Other

bin Section Sys. Sys.

GeV/c pb/GeV/c pb/GeV/c pb/GeV/c pb/GeV/c

�=�1 �=+1

0-0.5 31.0 � 7.9 �8.2 +5.9 � 3.5

0.5-1 64.6 � 11.2 �11.8 +6.9 � 7.3

1-2 96.2 � 10.0 �7.8 +1.7 � 10.9

2-3 130.1 � 11.8 +4.7 �2.4 � 14.7

3-4 106.2 � 10.9 +9.7 �5.0 � 12.0

4-5 100.3 � 10.8 +13.6 �5.6 � 11.4

5-6 74.3 � 9.4 +10.4 �3.7 � 8.4

6-7 53.5 � 7.9 +6.7 �2.5 � 6.1

7-8 37.8 � 6.7 +2.3 �0.4 � 4.3

8-9 26.0 � 5.5 �1.2 +0.1 � 2.9

9-10 27.6 � 5.0 �2.1 +0.7 � 3.1

10-12 15.2 � 2.7 �1.5 +0.9 � 1.7

12-16 5.6 � 1.1 �0.7 +0.5 � 0.6
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TABLE II. The di�erential cross section (d2�=dPtdy)y=0�Br(�(2S)! �+��) for �(2S).

Pt Cross Stat. Pol. Other

bin Section Sys. Sys.

GeV/c pb/GeV/c pb/GeV/c pb/GeV/c pb/GeV/c

�=�1 �=+1

1-3 30.7 � 5.3 �1.1 +0.7 � 4.3

3-5 35.6 � 5.1 +3.6 �2.0 � 4.9

5-7 13.1 � 3.7 +1.9 �0.7 � 1.8

7-10 8.2 � 2.2 +0.5 �0.3 � 1.1

TABLE III. The di�erential cross section (d2�=dPtdy)y=0�Br(�(3S) ! �+��) for

�(3S).

Pt Cross Stat. Pol. Other

bin Section Sys. Sys.

GeV/c pb/GeV/c pb/GeV/c pb/GeV/c pb/GeV/c

�=�1 �=+1

1-3 21.3 � 4.5 �0.4 +0.7 � 3.0

3-5 15.9 � 4.3 +1.1 �1.0 � 2.2

5-10 5.4 � 1.8 +0.8 �0.3 � 0.8
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FIG. 1. The invariant mass distribution of muon pairs in the � mass region for jyj < 0.4.

The histogram corresponds to the data and the solid curve is a �t to three Gaussians plus

a quadratic background.
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FIG. 2. (a) The product (d2�=dPtdy)y=0�Br vs. Pt for �(1S)! �+��. The vertical er-

ror bars include the statistical uncertainty added in quadrature with the polarization, �tting

procedure and acceptance model systematics. There is an additional common systematic

of 7% from the e�ciency corrections and luminosity determination which is not included in

the error bars. The color-singlet calculation from Ref. [5], multiplied by Br(�(1S)! �+��)

= 2.48% [15] and divided by �y = 0:8, is also shown. The theoretical prediction includes

contributions from direct �(1S) production and �b(1P) and �b(2P) decay.

(b) The product (d2�=dPtdy)y=0 � Br vs. Pt for �(2S) ! �+��. The indicated error

bars are calculated as in (a). The color-singlet calculation from Ref. [5], multiplied by

Br(�(2S)! �+��) = 1.31% [15] and divided by �y = 0:8, is also shown. The theoretical

prediction includes contributions from direct �(2S) production and �b(2P) decay.

(c) The product (d2�=dPtdy)y=0 � Br vs. Pt for �(3S) ! �+��. The indicated error

bars are calculated as in (a). The color-singlet calculation from Refs. [5,12], multiplied by

Br(�(3S) ! �+��) = 1.81% [15] and divided by �y = 0:8 is also shown. The dashed

line corresponds to the direct �(3S) production contribution and the solid line corresponds

to the sum of the contributions from the direct �(3S) production and the decay of the

unobserved �b(3P) state.
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